Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ACS Nano ; 18(3): 2370-2383, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38189275

RESUMO

Nanoplastics (NPs) pervade daily life, posing serious threats to marine ecosystems. Despite the crucial role that surface charge plays in NP effects, there is a substantial gap in our understanding of how surface charge influences NP toxicity. Herein, by exposing Ruditapes philippinarum (R. philippinarum) to both positively charged NPs (p-NPs) and negatively charged NPs (n-NPs) at environmentally relevant particle number levels for a duration of 35 days, we unequivocally demonstrate that both types of NPs had discernible impacts on the clams depending on their surface charge. Through transcriptomic and proteomic analyses, we unveiled the primary mechanisms behind p-NP toxicity, which stem from induced mitochondrial dysfunction and ferroptosis. In contrast, n-NPs predominantly stimulated innate immune responses, influencing salivary secretion and modulating the complement and coagulation cascades. Furthermore, in vitro tests on clam immune cells confirmed that internalized p-NPs triggered alterations in mitochondrial morphology, a decrease in membrane potential, and the initiation of ferroptosis. Conversely, n-NPs, to a certain extent, moderated the expression of genes related to immune responses, thus mitigating their adverse effects. Taken together, these findings indicate that the differential surface-charge-driven ferroptosis and mitochondrial dysfunction in clams play a critical role in the toxicity profile of NPs, providing an insightful reference for assessing the ecological toxicity associated with NPs.


Assuntos
Bivalves , Ferroptose , Doenças Mitocondriais , Poluentes Químicos da Água , Animais , Microplásticos/metabolismo , Microplásticos/farmacologia , Proteômica , Ecossistema , Poliestirenos
2.
Sci Total Environ ; 912: 168686, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38000751

RESUMO

A key requirement for evaluating the safety of nano-enabled water treatment devices is measuring concentrations of insoluble nanomaterials released from devices into water that may be ingested by consumers. Therefore, there is a need for simple technique that uses commonly available commercial laboratory techniques to discriminate between nanoparticles and dissolved by-products of the nanomaterial (e.g., ionic metals). Such capabilities would enable screening for particulate or dissolved metals released into water from nanomaterial-containing drinking water contact materials (e.g., paint coatings) or devices (e.g., filters). This multi-laboratory study sought to investigate the use of relatively inexpensive centrifugal ultrafilters to separate nanoparticulate from ionic metal in combination with inductively-coupled plasma mass spectrometry (ICP-MS) detection. The accuracy, precision, and reproducibility for the proposed method were assessed using mixtures of nanoparticulate and ionic gold (Au) in a standard and widely utilized model water matrix (NSF International Standard 53/61). Concentrations for both ionic and nanoparticulate gold based upon measurements of Au mass in the initial solutions and Au permeating the centrifugal ultrafilters. Results across different solution compositions and different participating labs showed that ionic and nanoparticulate Au could be consistently discriminated with ppb concentrations typically resulting in <10 % error. A mass balance was not achieved because nanoparticles were retained on membranes embedded in plastic holders inside the centrifuge tubes, and the entire apparatus could not be acid and/or microwave digested. This was a minor limitation considering the ultrafiltration method is a screening tool, and gold concentration in the permeate indicates the presence of ionic metal rather than nanoforms. With further development, this approach could prove to be an effective tool in screening for nanomaterial release from water-system or device materials as part of third-party certification processes of drinking water compatible products.


Assuntos
Água Potável , Nanopartículas Metálicas , Espectrometria de Massas/métodos , Água Potável/análise , Ultrafiltração , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Ouro/química
3.
Environ Sci Technol ; 57(48): 19932-19941, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37975618

RESUMO

Climate change-induced extreme weather events (heat, cold, drought, and flooding) will severely affect crop production. Increasing the resilience of crops to fluctuating environmental conditions is critically important. Here, we report that nanomaterials (NMs) with reactive oxygen species (ROS)-generating properties can be used as seed priming agents to simultaneously enhance the tolerance of maize seeds and seedlings to diverse and even multiple stresses. Maize seeds primed with 40 mg/L silver nanoparticles (AgNPs) exhibited accelerated seed germination and an increased germination rate, greater seedling vigor, and better seedling growth under drought (10% and 20% PEG), saline (50 and 100 mM NaCl), and cold (15 °C) stress conditions, indicating enhanced resilience to diverse stresses. Importantly, maize resistance to simultaneous multiple stresses (drought and cold, drought and salt, and salt and cold) was markedly enhanced. Under drought conditions, seed priming significantly boosted root hair density and length (17.3-82.7%), which enabled greater tolerance to water deficiency. RNA-seq analysis reveals that AgNPs seed priming induced a transcriptomic shift in maize seeds. Plant hormone signal transduction and MAPK signaling pathways were activated upon seed priming. Importantly, low-cost and environmentally friendly ROS-generating Fe-based NMs (Fe2O3 and Fe3O4 NPs) were also demonstrated to enhance the resistance of seeds and seedlings to drought, salt, and cold stresses. These findings demonstrate that a simple seed priming strategy can be used to significantly enhance the climate resilience of crops through modulated ROS homeostasis and that this approach could be a powerful nanoenabled tool for addressing worsening food insecurity.


Assuntos
Nanopartículas Metálicas , Zea mays , Espécies Reativas de Oxigênio/metabolismo , Zea mays/metabolismo , Nanopartículas Metálicas/toxicidade , Prata , Plântula/metabolismo , Germinação , Estresse Fisiológico , Cloreto de Sódio/farmacologia , Sementes/metabolismo
4.
Sci Total Environ ; 903: 166585, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37643702

RESUMO

Microplastics (MPs) contamination is becoming a significant environmental issue, as the widespread omnipresence of MPs can cause many adverse consequences for both ecological systems and humans. Contrary to what is commonly thought, the toxicity-inducing MPs are not the original pristine plastics; rather, they are completely transformed through various surface functional groups and aggressive biofilm formation on MPs via aging or weathering processes. Therefore, understanding the impacts of MPs' surface functional groups and biofilm formation on biogeochemical processes, such as environmental fate, transport, and toxicity, is crucial. In this review, we present a comprehensive summary of the distinctive impact that surface functional groups and biofilm formation of MPs have on their significant biogeochemical behavior in various environmental media, as well as their toxicity and biological effects. We place emphasis on the role of surface functional groups and biofilm formation as a means of influencing the biogeochemical processes of MPs. This includes their effects on pollutant fate and element cycling, which in turn impacts the aggregation, transport, and toxicity of MPs. Ultimately, future research studies and tactics are needed to improve our understanding of the biogeochemical processes that are influenced by the surface functional groups and biofilm formation of MPs.

5.
Trends Plant Sci ; 28(11): 1310-1325, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37453924

RESUMO

The plant-associated microbiome is known to be a critical component for crop growth, nutrient acquisition, resistance to pathogens, and abiotic stress tolerance. Conventional approaches have been attempted to manipulate the plant-soil microbiome to improve plant performance; however, several issues have arisen, such as collateral negative impacts on microbiota composition. The lack of reliability and robustness of conventional techniques warrants efforts to develop novel alternative strategies. Nano-enabled approaches have emerged as promising platforms for enhancing agricultural sustainability and global food security. Specifically, the use of engineered nanomaterials (ENMs) as nanoscale agrochemicals has great potential to modulate the plant-associated microbiome. We review the dynamic interplay between nano-agrochemicals and the plant-associated microbiome for the safe development and use of nano-enabled microbiome engineering.

6.
Environ Sci Technol ; 57(26): 9773-9781, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37334664

RESUMO

Orthogonal techniques were used to track manganese nanoparticles (MnNPs) in Capsicum annuum L. leaf tissue and cell compartments and subsequently to explain the mechanism of uptake, translocation, and cellular interaction. C. annuum L was cultivated and foliarly exposed to MnNPs (100 mg/L, 50 mL/per leaf) before analysis by using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) as well as dark-field hyperspectral and two-photon microscopy. We visualized the internalization of MnNP aggregates from the leaf surface and observed particle accumulation in the leaf cuticle and epidermis as well as spongy mesophyll and guard cells. These techniques enabled a description of how MnNPs cross different plant tissues as well as selectively accumulate and translocate in specific cells. We also imaged abundant fluorescent vesicles and vacuoles containing MnNPs, indicating likely induction of autophagy processes in C. annuum L., which is the bio-response upon storing or transforming the particles. These findings highlight the importance of utilizing orthogonal techniques to characterize nanoscale material fate and distribution with complex biological matrices and demonstrate that such an approach offers a significant mechanistic understanding that can inform both risk assessment and efforts aimed at applying nanotechnology to agriculture.


Assuntos
Capsicum , Nanopartículas , Capsicum/química , Manganês , Microscopia Eletrônica de Varredura , Autofagia
7.
J Hazard Mater ; 444(Pt A): 130427, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410248

RESUMO

In this study, soil-grown pakchoi after 2 weeks seedling cultivation were exposed to CeO2 nanoparticles (CeO2 NPs) at 0.7, 7, 70, and 350 mg kg-1 for 30 days. Results showed that chlorophyll content and photosynthetic assimilation rate were decreased significantly under all treatments with the largest decrease of 34.16% (0.7 mg kg-1 CeO2 NPs), however, sub-stomatal CO2 was increased dramatically under low dose of CeO2 NPs (0.7 mg kg-1). There were 4576, 3548, 2787, and 2514 genes up/down regulated significantly by 0.7, 7, 70, and 350 mg kg-1 CeO2 NPs, respectively, and 767 genes affected under all treatments. In addition, 0.7 mg kg-1 CeO2 NPs up-regulated 10 chlorophyll synthesis genes, 20 photosynthesis genes, and 10 carbon fixation enzyme genes; while 350 mg kg-1 CeO2 NPs down-regulated 5 photosynthesis genes and 28 auxin-activated genes. Among the key genes of photosynthesis, Ferredoxin-NADP reductase (PetH) was upregulated in 0.7, 7 and 70 mg kg-1 treatments, while Photosystem II lipoprotein (Psb27) was downregulated under 7, 70 and 350 mg kg-1 treatments. Top 20 metabolic pathways affected by CeO2 NPs including plant hormone, amino acids, and glutathione, and carbon metabolism These results provide information about utilizing CeO2 NPs more safely and effectively in the future.


Assuntos
Brassica , Nanopartículas , Transcriptoma , Fotossíntese , Nanopartículas/toxicidade , Clorofila
8.
Sci Total Environ ; 863: 161004, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36543270

RESUMO

Heavy metal contamination in raw materials has spread widely in the United States. The high increased number of recalls in consumer products and the lack of stricter regulations in the raw materials to be used in the jewelry industry have raised concerns among consumers. Studies in low-cost jewelry have shown the presence and high content of heavy metals; this environmental problem led to a child's death after swallowing a charm containing elevated levels of lead (Pb). Exposure to heavy metals, through inhalation, mouth, and skin contact, causes adverse health effects in children and adults. Exposure to lead affects mainly the nervous system and brain development; exposure to cadmium (Cd) causes damage to liver, kidneys, and lungs, and potentially leads to cancer; exposure to nickel (Ni) causes severe dermatitis. Thus, the importance and impact of studies of this nature cannot be overstated. As heavy metal contamination has increased in the United States, this research fills an important knowledge gap between previous studies conducted on low-cost jewelry and fine jewelry. In this study, conducted in the Paso del Norte region, one hundred and forty-three pieces of fine jewelry were evaluated for the presence of heavy metals using X-ray fluorescence (XRF) spectroscopy. Our study showed that 61 samples (42.7 %) exhibited the presence of Ni in the metal alloy, prevailing in jewelry pieces with lower percentage of gold. Eighteen samples showed the presence of Pb in gemstones, 11 pieces of these samples (7.7 % total) had <33.3 % gold (≤10 K); however, none of the samples showed the presence of Pb in the metal alloy. Further research is needed to evaluate the bioaccessibility of Pb in these gemstones, which may pose a potential health hazard to children and adults in the US Paso del Norte region and throughout the world.


Assuntos
Joias , Metais Pesados , Criança , Humanos , Estados Unidos , Chumbo , México , Jogos e Brinquedos , Metais Pesados/toxicidade , Metais Pesados/análise , Cádmio/análise , Níquel , Ouro , Espectrometria por Raios X , Ligas , Monitoramento Ambiental , Medição de Risco
9.
Micromachines (Basel) ; 15(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38258143

RESUMO

Colloidal systems and their control play an essential role in daily human activities, but several drawbacks lead to an avoidance of their extensive application in some more productive areas. Some roadblocks are a lack of knowledge regarding how to influence and address colloidal forces, as well as a lack of practical devices to understand these systems. This review focuses on applying dynamic light scattering (DLS) as a powerful tool for monitoring and characterizing nanoparticle aggregation dynamics. We started by outlining the core ideas behind DLS and how it may be used to examine colloidal particle size distribution and aggregation dynamics; then, in the last section, we included the options to control aggregation in the chemically processed toner. In addition, we pinpointed knowledge gaps and difficulties that obstruct the use of DLS in real-world situations. Although widely used, DLS has limits when dealing with complicated systems, including combinations of nanoparticles, high concentrations, and non-spherical particles. We discussed these issues and offered possible solutions and the incorporation of supplementary characterization approaches. Finally, we emphasized how critical it is to close the gap between fundamental studies of nanoparticle aggregation and their translation into real-world applications, recognizing challenges in colloidal science.

10.
Environ Sci Technol ; 56(19): 13719-13727, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36137535

RESUMO

Carbon black (CB) is a nanomaterial with numerous industrial applications and high potential for integration into nano-enabled water treatment devices. However, few analytical techniques are capable of measuring CB in water at environmentally relevant concentrations. Therefore, we intended to establish a quantification method for CB with lower detection limits through utilization of trace metal impurities as analytical tracers. Various metal impurities were investigated in six commercial CB materials, and the Monarch 1000 CB was chosen as a model for further testing. The La impurity was chosen as a tracer for spICP-MS analysis based on measured concentration, low detection limits, and lack of polyatomic interferences. CB stability in water and adhesion to the spICP-MS introduction system presented a challenge that was mitigated by the addition of a nonionic surfactant to the matrix. Following optimization, the limit of detection (64 µg/L) and quantification (122 µg/L) for Monarch 1000 CB demonstrated the applicability of this approach to samples expected to contain trace amounts of CB. When compared against gravimetric analysis and UV-visible absorption spectroscopy, spICP-MS quantification exhibited similar sensitivity but with the ability to detect concentrations an order of magnitude lower. Method detection and sensitivity was unaffected when dissolved La was spiked into CB samples at environmentally relevant concentrations. Additionally, a more complex synthetic matrix representative of drinking water caused no appreciable impact to CB quantification. In comparison to existing quantification techniques, this method has achieved competitive sensitivity, a wide working range for quantification, and high selectivity for tracing possible release of CB materials with known metal contents.


Assuntos
Água Potável , Fuligem , Espectrometria de Massas/métodos , Metais , Tamanho da Partícula , Tensoativos
11.
ACS Nano ; 16(7): 11204-11217, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35792576

RESUMO

Nanoscale sulfur can be a multifunctional agricultural amendment to enhance crop nutrition and suppress disease. Pristine (nS) and stearic acid coated (cS) sulfur nanoparticles were added to soil planted with tomatoes (Solanum lycopersicum) at 200 mg/L soil and infested with Fusarium oxysporum. Bulk sulfur, ionic sulfate, and healthy controls were included. Orthogonal end points were measured in two greenhouse experiments, including agronomic and photosynthetic parameters, disease severity/suppression, mechanistic biochemical and molecular end points including the time-dependent expression of 13 genes related to two S bioassimilation and pathogenesis-response, and metabolomic profiles. Disease reduced the plant biomass by up to 87%, but nS and cS amendment significantly reduced disease as determined by area-under-the-disease-progress curve by 54 and 56%, respectively. An increase in planta S accumulation was evident, with size-specific translocation ratios suggesting different uptake mechanisms. In vivo two-photon microscopy and time-dependent gene expression revealed a nanoscale-specific elemental S bioassimilation pathway within the plant that is separate from traditional sulfate accumulation. These findings correlate well with time-dependent metabolomic profiling, which exhibited increased disease resistance and plant immunity related metabolites only with nanoscale treatment. The linked gene expression and metabolomics data demonstrate a time-sensitive physiological window where nanoscale stimulation of plant immunity will be effective. These findings provide mechanistic understandings of nonmetal nanomaterial-based suppression of plant disease and significantly advance sustainable nanoenabled agricultural strategies to increase food production.


Assuntos
Solanum lycopersicum , Enxofre/farmacologia , Doenças das Plantas/prevenção & controle , Solo/química , Plantas/metabolismo , Sulfatos/metabolismo
12.
Sci Total Environ ; 844: 157160, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35798116

RESUMO

The objective of the current study is to evaluate both the positive and negative effects of manganese-doped graphene quantum dots (GQD-Mn) on Capsicum annuum L. grown under salt stress. GQD-Mn was synthesized, characterized, and foliar-applied (250 mg/L, 120 mg/L, 60 mg/L) to C. annuum L. before and after the flowering stage, during which 100 mM of NaCl solution was introduced into the soil as salt stress. Controls were designed as absolute control (no nanomaterials or salt) and negative control (no nanomaterials only salt). Herein, we report that GQD-Mn offset the reduction of fruit production in salt-stressed C. annuum L. by around 40 %. However, based on a comprehensive analysis of normal alkanes (n-alkane) using gas chromatography-mass spectrometry (GC-MS), we also observed that the leaf epicuticular wax profile was disturbed by GQD-Mn, as the concentration of long-chain n-alkanes was increased. Meanwhile, the content of magnesium (Mg) and zinc (Zn) indicated a potential promoted photosynthesis activity in C. annuum L leaves. We hypothesize that the optical properties of GQD-Mn allow leaves to utilize light more efficiently, thus improving photosynthetic activities in plants to acclimate salt stress. But the increased light usage also induced heat stress on the leaf surfaces, which caused n-alkanes changes. Our results provided a unique perspective on nano-plant interaction that value both beneficial and toxic effects of nanomaterials, especially when evaluating the safety of nano-enabled agriculture in areas facing harsh environmental conditions such as salinity.


Assuntos
Capsicum , Grafite , Pontos Quânticos , Alcanos , Capsicum/química , Íons , Manganês/toxicidade , Folhas de Planta , Pontos Quânticos/toxicidade , Estresse Salino
13.
Nanomaterials (Basel) ; 12(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35889574

RESUMO

Carbohydrates and phytonutrients play important roles in tomato fruit's nutritional quality. In the current study, Fe3O4, MnFe2O4, ZnFe2O4, Zn0.5Mn0.5Fe2O4, Mn3O4, and ZnO nanomaterials (NMs) were synthesized, characterized, and applied at 250 mg/L to tomato plants via foliar application to investigate their effects on the nutritional quality of tomato fruits. The plant growth cycle was conducted for a total of 135 days in a greenhouse and the tomato fruits were harvested as they ripened. The lycopene content was initially reduced at 0 stored days by MnFe2O4, ZnFe2O4, and Zn0.5Mn0.5Fe2O4; however, after a 15-day storage, there was no statistical difference between the treatments and the control. Moreover, the ß-carotene content was also reduced by Zn0.5Mn0.5Fe2O4, Mn3O4, and ZnO. The effects of the Mn3O4 and ZnO carried over and inhibited the ß-carotene after the fruit was stored. However, the total phenolic compounds were increased by ZnFe2O4, Zn0.5Mn0.5Fe2O4, and ZnO after 15 days of storage. Additionally, the sugar content in the fruit was enhanced by 118% and 111% when plants were exposed to Mn3O4 and ZnO, respectively. This study demonstrates both beneficial and detrimental effects of various NMs on tomato fruit quality and highlights the need for caution in such nanoscale applications during crop growth.

14.
NanoImpact ; 26: 100406, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35588596

RESUMO

In this study, we investigated the effects of citric acid (CA) coated copper oxide nanoparticles (CuO NPs) and their application method (foliar or soil exposure) on the growth and physiology of soybean (Glycine max). After nanomaterials exposure via foliar or soil application, Cu concentration was elevated in the roots, leaves, stem, pod, and seeds; distribution varied by plant organ and surface coating. Foliar application of CuO NPs at 300 mg/L and CuO-CA NPs at 75 mg/L increased soybean yield by 169.5% and 170.1%, respectively. In contrast, foliar and soil exposure to ionic Cu with all treatments (75 and 300 mg/L) had no impact on yield. Additionally, CuO-CA NPs at 300 mg/L significantly decreased Cu concentration in seeds by 46.7%, compared to control, and by 44.7%, compared to equivalent concentration of CuO NPs. Based on the total Cu concentration, CuO NPs appeared to be more accessible for plant uptake, compared to CuO-CA NPs, inducing a decrease in protein content by 56.3% and inhibiting plant height by 27.9% at 300 mg/kg under soil exposure. The translocation of Cu from leaf to root and from the root to leaf through the xylem was imaged by two-photon microscopy. The findings indicate that citric acid coating reduced CuO NPs toxicity in soybean, demonstrating that surface modification may change the toxic properties of NPs. This research provides direct evidence for the positive effects of CuO-CA NPs on soybean, including accumulation and in planta transfer of the particles, and provides important information when assessing the risk and the benefits of NP use in food safety and security.


Assuntos
Nanopartículas Metálicas , Solo , Ácido Cítrico/farmacologia , Cobre/farmacologia , Íons , Nanopartículas Metálicas/toxicidade , /metabolismo
15.
Sci Total Environ ; 838(Pt 1): 155919, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35577096

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) have the potential to cause cancer, teratogenicity, and mutagenesis in humans. Long-term plant safe production relies on how PAHs are transported and coordinated across organs. However, the acropetal transfer mechanism of PAHs in staple crop stems, particularly in xylem, a critical path, is unknown. Herein, we first confirmed the presence of specific interaction between the proteins and phenanthrene by employing the magnetic phenanthrene-bound bead immunoassay and label free liquid chromatograph mass spectrometer (LC-MS/MS), suggesting that peroxidase (uniprot accession: A0A3B5XXD0) and unidentified proteins (uniprot accession: A0A3B6LUC6) may function as the carriers to load and acropetally translocate phenanthrene (a model PAH) in wheat xylem. This specified binding of protein-phenanthrene may form through hydrophobic interactions in the conservative binding region, as revealed by protein structural investigations and molecular docking. To further investigate the role of these proteins in phenanthrene solubilization, phenanthrene exposure was conducted: a substantial quantity of peroxidase was produced; an unusually high expression of uncharacterized proteins was observed, indicating their positive effects in the acropetal transfer of phenanthrene in wheat xylem. These data confirmed that the two proteins are crucial in the solubilization of phenanthrene in wheat xylem sap. Our findings provide fresh light on the molecular mechanism of PAH loading in plant xylem and techniques for ensuring the security of staple crops and improving the efficacy of phytoremediation in a PAH-contaminated environment.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Cromatografia Líquida , Humanos , Simulação de Acoplamento Molecular , Peroxidases/metabolismo , Fenantrenos/metabolismo , Raízes de Plantas/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Espectrometria de Massas em Tandem , Triticum/metabolismo , Xilema
16.
Nat Food ; 3(10): 829-836, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-37117882

RESUMO

Nanobiotechnology approaches to engineering crops with enhanced stress tolerance may be a safe and sustainable strategy to increase crop yield. Under stress conditions, cellular redox homeostasis is disturbed, resulting in the over-accumulation of reactive oxygen species (ROS) that damage biomolecules (lipids, proteins and DNA) and inhibit crop growth and yield. Delivering ROS-scavenging nanomaterials to plants has been shown to alleviate abiotic stress. Here we review the current state of knowledge of using ROS-scavenging nanomaterials to enhance plant stress tolerance. When present below a threshold level, ROS can mediate redox signalling and defence pathways that foster plant acclimatization against stress. We find that ROS-triggering nanomaterials, such as nanoparticulate silver and copper oxide, have the potential to be judiciously applied to crop species to stimulate the defence system, prime stress responses and subsequently increase the stress resistance of crops.

18.
ACS Nano ; 15(10): 16344-16356, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34569785

RESUMO

Fully understanding the environmental implications of engineered nanomaterials is crucial for their safe and sustainable use. Cyanobacteria, as the pioneers of the planet earth, play important roles in global carbon and nitrogen cycling. Here, we evaluated the biological effects of molybdenum disulfide (MoS2) nanosheets on a N2-fixation cyanobacteria (Nostoc sphaeroides) by monitoring growth and metabolome changes. MoS2 nanosheets did not exert overt toxicity to Nostoc at the tested doses (0.1 and 1 mg/L). On the contrary, the intrinsic enzyme-like activities and semiconducting properties of MoS2 nanosheets promoted the metabolic processes of Nostoc, including enhancing CO2-fixation-related Calvin cycle metabolic pathway. Meanwhile, MoS2 boosted the production of a range of biochemicals, including sugars, fatty acids, amino acids, and other valuable end products. The altered carbon metabolism subsequently drove proportional changes in nitrogen metabolism in Nostoc. These intracellular metabolic changes could potentially alter global C and N cycles. The findings of this study shed light on the nature and underlying mechanisms of bio-nanoparticle interactions, and offer the prospect of utilization bio-nanomaterials for efficient CO2 sequestration and sustainable biochemical production.


Assuntos
Molibdênio , Nostoc , Carbono , Nitrogênio
19.
Nanomaterials (Basel) ; 11(4)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921482

RESUMO

Given the known presence of SARS-Cov-2 in wastewater, stemming disease spread in global regions where untreated effluent in the environment is common will experience additional pressure. Though development and preliminary trials of a vaccine against SARS-CoV-2 have been launched in several countries, rapid and effective alternative tools for the timely detection and remediation of SARS-CoV-2 in wastewater, especially in the developing countries, is of paramount importance. Here, we propose a promising, non-invasive technique for early prediction and targeted detection of SARS-CoV-2 to prevent current and future outbreaks. Thus, a combination of nanotechnology with wastewater-based epidemiology and artificial intelligence could be deployed for community-level wastewater virus detection and remediation.

20.
Sci Total Environ ; 774: 145699, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33609834

RESUMO

Rutile titanium dioxide nanoparticles (nTiO2) were weathered in field soil at 0, 100, 200, and 400 mg Ti/kg soil for four months. Two types of nTiO2 with different surface coatings (hydrophilic and hydrophobic), uncoated nTiO2 (pristine), and the untreated control were included. Thereafter, carrot seeds (Daucus carota L.) were sown in those soils and grown in a growth chamber for 115 days until full maturity. A comparison was made between this and our previous unaged study, where carrots were treated in the same way in soil with freshly amended nTiO2. The responses of plants depended on the nTiO2 surface coating and concentration. The aged hydrophobic and hydrophilic-coated nTiO2 induced more positive effects on plant development at 400 and 100 mg Ti/kg soil, respectively, compared with control and pristine treatments. Taproot and leaf fresh biomass and plant height were improved by up to 64%, 40%, and 40% compared with control, respectively. Meanwhile, nutrient elements such as Fe in leaves, Mg in taproots, and Ca, Zn, and K in roots were enhanced by up to 66%, 64%, 41, 143% and 46%, respectively. However, the contents of sugar, starch, and some other metal elements in taproots were negatively affected, which may compromise their nutritional quality. Taken together, the overall growth of carrots was benefited by the aged nTiO2 depending on coating and concentration. The aging process served as a potential sustainable strategy to alleviate the phytotoxicity of unweathered nanoparticles.


Assuntos
Daucus carota , Nanopartículas , Nanopartículas/toxicidade , Nutrientes , Solo , Titânio/análise , Titânio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...